
Cfo

I DTI C

~OF~ ELECT

DESIGN AND IMPLEMENTATION OF THE NESTED U
RELATIONAL DATA MODEL UNDER TlE EXODUS

EXTENSIBLE DATABASE SYSTEM

THESIS

Michael Anthony Mankus
Captain, USAF

AFIT/'GCS,,,NGi'S9D-ii

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

I Approv d J 8 £a 12
Dintbbtkmi Uahn1vdi~ ive !

AFIT/GCS/ENG/89D. 11

DESIGN AND IMPLEMENTATION OF THE N-SES I
RELATIONAL DATA MODEL UNDER THE E~XODUI.S

EXTENSIBLE DATABASE SYSTEM

T EmSS

Michael Anthonv Nfa,.A'-us

Captain, USAF

A FIT/GCS/ENG/89D- 11I

Approved for puiblic relvase; dist ribti ion 1i till in led

AII/(;CS/ENG/89D- I

DESIGN AND IMPLEMENTATION OF THlE NESTED RELATIONAL l)A'l.\

MODEL UNDER THE EXODUS EXTENSIBLE DATABASE SYSTEM

THlESIS

P~resentedI to the Faculty of the School of Engineeringf

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science (Computer Systems)

Michael Anthony Man kus, H .S.E1. F.

Captain, USAF

[)vcernher, L989

A pproved for public release; distribution imiimi ted

atI~>l.1'ill 2 111d 441 to a 4 144 1 '\4'! fw ph)V 2'' 1 ' j r! 11 i i

pr lAt l.t 1Y ;d .i(l.N TK RN.\ 1, id i 1- 1 1: Nialk l,

DTpd Iw IlIl C;111 Iltw ;((I li .I3 I

!ceso Forde

A1 ______ Cde

1I061)/f(j ((10ff u)t.,

_\cknt vv ltd -m on ts .

l' ,t 4 I rf . ..,. ..si
A h 't ,1" .-i _, r , .

\ li-I rul t . viii

Iti! rfil) t io n .. -t

1.1 Backgro unt . -I

1.1. 1 llist(lri,';il Pl r'r ,ctiv , 1I

1.1.2 Num tr;,ditional l)atabase Applications 1-2

1.1.3 Lxtendinig th e Relational Model 1-2

1.1.I Soparating the Architecture from the Data .\lehI . I-2

1.!..-, T wHe Nested Relational Modoel 1 ,-3

1.2 1'iIrpose of Tlesis . 1-.3

1.2.1 T he Prubfl ,in .. 1

I.2 .2 S)I(,e 4 t ti, "I h ,sis I -i

1 .:3 Sof l'I Io f Prpo ,lntatia il -

If. lie Nested Relational Dlata M l!

2.1 Introduction 2- 1

2.2 The Relational Data Iodlel 2- 1

2.2.1 The Relatimal Operato;rs. 2-:

2.3 ie Nested Thlational Data Modl 2-1

2.3.1 Th, N,st,,O Rlatio

2.3.2 P'he R lational Alebra - -

2.1 ..ui..ar 2-11

iii

lI . T ie Exodus Extensiblo' 1)1t,lbt;- A rchitcctlin

3 .1 lnt rio (Ct i(c i ..

3.2 Th, Pa;rsor .-.. ,

31.3 I [li, ('at) .\ l ; ,,r . I

3.1 'h , D)aIt t i.t. ..rv

3 .1.1 N a mttti .. i 7

3. .2 lv :-

3. 1.3 Leve..l

3 . t. I N u m h ,r. .:3 T

3;. 1.."+, 1) "ll .. 3 -1.

;1..- (Oiery (ptititi/ r . 3-S

3.7 (' lnid t 3- 12

:1.>t ()perator , .e2

3+.9 .A ct ; 's M ol th l l .. .

:1.10 stmt -ar , elra 2,e. A I

3. 1 l) t 1a l Ise,

1I [2 ,1111t1 t1 :a l1-, . -

IV . I) anidit ftl [riplettienta;ttizil I-I

4.1 N ested R elation .-. 1.. .

,1.1.1 uItn [)l ele i lat t at t- 2

1.2 T he P arser .

1.2.1 Impilu , ti t i i-

1.3 []i, ('atahwt N iT;mn r and1(Data Di.t i t I 7

I.ll lmllem oml teal (itjI

1. I I,,, u , 4-rv .r,, 1

. . ii tl tlt, at I

vx

4.5 The E Source (mk Gli (i'rator .. . Ii

-1 .. 1 tI t pl ni i 1 ;0 ()1 . . 1

1.6; The Opol'raroi \Io,'l s

1.7 lis i In Va I .da

C i i i l .tI .Iii'

V.itai n i \.

Fn ~ o

1,.- t o.f l" / t .

F i a ture 1';,

2.1. 1 1 l. .'.

•2.'2. -I'll, m l,).q r,,lati~ ll .. 2

2 .3 . I'l l t(I ulo!I(r nj, d,l r ,l il l .. .I .1

-2. 1 ho tt, ld ',f 'ho v'r>., , f' ii,, i/s i.Pku l l . .ii 2

.. le,. I' l(l ,' onlt lohe w,, tii I (hlii i 11;m1(. ,

".1;. rli ('eued slct (yi,;tu r,-ilt 2)

". - 1w . 1,,,,/ 2r-1

'2.1-s. I'l\ ty pio tov r li . oio ihl toi e school 2-10

1.1 . lih ctilI relatio)i specific;itioln .l.l.... 1.

1.2. Mletier lit"tctioi n intiple ei titation for c/1ld reltiion .o.n....... . 1-

lI.3. [Ile iestel re lation .,l cilficationi foi itplo.t (.. I-

1.1. I)'c ;ratI (o " a persi stlt 4il f lo. . t i,. l 1-

1.(. l .ean i. ..-

1,11 o klio l i) l k l o ~ (.

1.7. Ihe Q IIK I "l ,n.n.n.n. I n

.1-8. The ARGUMENT sIult riictli..-(.. - l

9 The PRED node. I

4.10. The LIST node 1

1.1 I. .\ qtery tro srio t ..r(. 12

1.12. Tho' tsti' tinig rolati olt 13

1.13. [li PI..\N ... 1 :3

1.1 1. [h titllpi)rary relation si tl er ..s I-I.

\ I

Figure '

7. I.. fi[llplement Ing the pIoi''t (11 . If

-1. 16. File scan class a nd irm rloirir it[(M . .r.r.

1.17. Lo ps Ii cl[ass and[imxplem o ;il" . -

AFIT/GCS/ENG/S9D- 11

A /)I Ir/'1'

l' h I Is iH4'(I t 4) i I Jl'! II k tI ''\ k' t[f(tlt 1,I, I't ' I I I I I "1. I It [l l, II' I i,

I , Ic I t i I aI r ie (I l a r I it' I a1 1,)f Ill I) ff , iV ON I t I it) d'. I I u I I I ., -1 r4,

;I r IL)' t > ;bp If' ru aul)oIil IITh', p 'lt i I. th ,, u(I) t(, Ito' i4 , 1, .cI-, 1t li1.1((I'd,

4 tnon-t raditional dat abas,, hv tndlliim., t,,Il-woulld ,obi, ill 1 ph,, 1,II l l I I ,t I, I I I

1t'cpt r d fl loll")(l I ll ' 1 l it, iVe14) 1 1 fu li (l iitlI\ 1 h, Fx 4),'t" l- ,1,"..' l

Ill ; 1 1t1 ;1 1 it a I t a ,Ic t I i tna rY. T h I I t dI)v Il a t i)I I a I + h1 ra I IIrI I- l I, l , It o ,, t r, ,

fo r t
,
w (Ile+ry opt ItIl ,r. atind ;I pl ;ni tr1',', pfrttl'It s tl, 11 ,[+ "< c(+)de,,~ t,< ho, ho, qu ,ry.

(p",r'at),r I I I hot I lt I t+r de v.' l, 1,,< (1 , f lit I 1 qu ,rI-Y t Io I I, -u ,,,,, I v I'' ,t I,(.

I1 + t l + I (I ,.I w ro I II'+ + I i t t t t r' , 1 1 1 ,1".. t .. ,' t , t I I I I +, Il I ' [I ;(" I {
+

' : ' I!

I, t ;I, I I IP +l, I t < c II t o it I I" IIIf 4 . , t 11 1 ; 1 1t

vfi

Design and Implementation of the Nested Relational)at a llod.1

Under The Exodus Extensible Database Svstei,

1. Introduction

! Background

1.1.1 Historical Pc rsp(ctirc. A large segment of the population is bW(oinimi i lcrea,-

ingly aware of just how Inuch data and information processing contlinues to revoluionize

everyday living. The cornplex technologies of today and tomorrow continue tI. advi nece the

iians of manipulating electonic data in its many forms to achieve sonic end. hor exam-

ple, an individual can now shop for personal goods and services with the help of a home

computer, while businesses can ise past .ales data to develop future strategis. Iii either

case, large amounts of data are involved and require effective and efficient processing wt h

the efforts of some type of database system.

A majority of existing database systerns provide the features to retri,,ve, iii, iv.

and manipulate data within the well-defined rules of the relational data model ,). lv

revolve around the concept of files and records, vital entities in today's fast -paced le-i

transaction environment. Because files and records niap extremely well Into itl a i ,[:t

foirmat of the relational model, software developers have aggressively pirsued tlite

of complex, integraLed database systmns to accomodate this large. expandlI u i uiarkel.

The relation is regarded as a table of records with coniion protpert es or at riht,,.

These common attributes are the fieids defined on a record within the rel ion. (,'va)-

erations may be performed on rclations to extract or modify the dat a within lieth dalli,,.

The operations are firmly based in the relational algebra and calciulis. uid the<, mIathI',-

matical concepts continue to provide the foundjation for further work in rel atioii databasm>e

frodels.

The wide acceptance of the relational model provides the framiewo rk for ioi tIc

cessful database systems and an enterprise designing a database for its particular neds

1-1

must adhere to the model and its proscr.Oe d operations. .Althbough not a di. ii fr -i;_

enterprises that automate record-type accounting procedures, t Le 111iod Ii' I It t!Ies .'4:

needs of potenti - users seeking nion-traditional database supp~ort.

1.1.2 .Voiraditional Database Applications. A growing need for data' asovs

is spreading fronm the traditional applications, as mentioned above, to what aire cottimilY

known as non-traditional applications. Many research and engine-rihig eiiterpri~es. w it I

their propensity to collect and mianipulate data, arc recognizing the ieed ftor i

mnanagement systems. However, mnany are forced to design ad hoc or riustoniized(lta;i

sstemns for their particular applications, and the desigi, norntallv revolve, aroun td >1111 flat

file structure with limited operations. In ess ence, thle relational model and its Operationls

are not providing anl adequate vehicle tinon which non-traditionial applicatilolls (an be

butilt. Comiputer-aided dlesign /con ilter- aidled ntaniufacttirinig/cornpu~iter-al,(ide niern

(':\D/CAMI/EAE). forms management. and imiagery/voice dlata are just a few examples

of non-traditional database applications.

1.1.3 Extending the Relational Model. To accornodate this growing area of datahi ,

svs t em design, attempts have bien underway over thk- past decade to exp;mtd the (:iji;i.

lbilitieF of the relational model. With the growing popularity of object -oroeite programn-

ming, several commer. lal products are designing abstract data typing (A 1)1) facildi."'

in an attempt to design database systemys for these non-traditional apllcat ions,. llv;d

lowing the formulation of A D's, dlatabase desip -lers are addinig nlew oprants r tIi

tion-traditional database concerns, to more readily nrt .lel the real w~orld. In :hu tiil.

o bject -oriented databases are introdlucing the notions of inheritance anid ii~aepsi

to enhance the object-oriented environment (3).

1.1.4 Separating the 4r'-'hitccturr frorn the Data .Modcl. ib'1is hias tnot g-ote ummIt-

1ced bY dlatabase designers. The ad vent of new (dat a models beyond thle (I tttext (d Il.

rIa t ion al mnodel has forced a re-evaluation of dat abase dlesign. Several svstettis. tnti~ i)f I

iii I4c t -orientod flavor, have (departed froin thle not ion of one miodel at- onoit arch lt ctlip

I'lbese new dlesign p~ackages take a toolkit approach toward the design of dat aba,. vs w ts

1-2

They provide the basic necessities that a database system requires: th, si,,r;,t, svs, III,'

the programming facilities to develop the system software. Several of these currort cii rroit

systems under development include POSTGRES, GEMSTONE, GENESIS. and FIXOI)ts

(4).

1.1.5 The Nested Relational Model. The nested relational mnolel is an ,xieiWi II

he traditional relational model. Besides retaining the traditional relatiolal opora i ,,

most research efforts point toward the addition of two more operators: nst and mii.I .

With the augmentation of these operators. the nesting of relations withinl rla ri,,n, i,

theoretically possible. That is. the attributes defined on some relation may actually ho

set-valued or relation-valued domains. The nested relational data inhd1l atppv;,rs to he

a possible alternative to support non-traditional database system application.s ;tl the

architectures mentioned above provide the basic means to design and implement such a

1.2 Purpose of Thesis

This thesis will use the EXODUS architecture to implement the ne.,l,,d rolait,,i

dalta model. EXOI)US. an acronym for EXtensible Object-oriented Datiahase Sv 'I .-

Ike property of the Vniversity of Wisconsin and is an ongoing research proijoct ilion

the university's computer science department. The extensibility of EXOI)US lios iII it>

provision of the necessary tools and components to develop application-specific d(atallise

systems. The system compiler, used for the compilation of system software, is based on

the E programming language, an extension of the object-oriented programming laiiuite

C++.

The present direction of database design actually strips away many of the coin polol-l s

and facilities commonly available with today's systems. In this manner, standardized t(l>

and components may be implemented on top of a particular architecture such as FX))'DS.

If generic or all-purpose components are already available in the system's libraries. the

database engineer, or DBE, adds the necessary ones in a modular fashion to avoil "to-

inventing the wheel."

1-3

1.2.1 The Problem. The main objective of this thesis effort is to const ruct a wok hirng

nested relational database management system utilizing the tools provided by lIhe txodu>

architecture. The overall problem, then, is to accurately reflect the model's foatures wii hii1

the constraints imposed by Exodus. A breakdown of the problem entails examiining 4,,,,h

one of the system components and tailoring it to the specifics of tho i ev,,ted relm tial

data model. Component considerations range from choosing a suitabe relational ahlgbra

to designing and implementing operator methods for actual data extraction. Six prilnarv

areas of concern to achieve the thesis objective are discussed below.

Relational algebras for the nested relational data model are priniarily v xlew-ions of

the traditional relational data model as first presented in (6). In this r%oearch. t 14 the

extended algebras under consideration include those found in (7) and (13). lThe (',Abv

algebra was chosen because it has an inherent and pleasing approach in it., interaction

with nested relations, and may prove less difficult to implement under an object-oriented

development environment. The basic problem, then, involves accurately transforming the

Colby relational algebra into the software domain defined by Exodus.

The catalog manager is an important, necessary component for any type of datala,,

system. It is here where information is maintained for all databases and their relat tir

associated with the system. The catalog manager permits various sYst ,i compoemilt to

access the data dictionary and obtain information crucial to their own operation. The data

dict*onary consolidates this information into data tables defining different aspects of the

database system as a whole. A system using the nested relational data model must account

for the nested attributes and in which relations they currently exist. The design prohhiis

with respect to the catalog manager and data dicionary center on Ihese tables mid h,

,outines which access them. The design must consider the number of tables which !wi,'t h.

created for providing minimum system functionality as well as the attributes which define

the properties of the tables. The routines must allow all components requiring cataleg

support uniform access into the data dictionary.

The third area of concern focuses on the structure of query tree. The tree reflects lIho

nature of the system's relational algebra, so the tree structure (esign an(d he relational

algebra chosen coincide very closely with each other. Since ('olby's algebra is to he it1i-

1-4

plemented, the operator specifications must be transformed into a structure recognized by

the optimizer. All query data entered by way of the parser must be placed into the .s)mce

allocated by the nodes comprising the query tree, each node representing an operator f

the rclational algebra. Because of the recursive nature of thc algebra. additional aixil-

iary nodes maintain the condition and navigation information required for descending into

the nested structure of relations. These auxiliary nodes represent the operator lists fo)r

each of the respective relational operators. 'I he problem highlights the need to ensure tI w

relational algebra and the tree's data structure match the intended nature of the algebra.

To enable the proper operation of the catalog manager with respect to the dt;,a

dictionary, and to ensure that the relational algebra is properly translated into a query

tree, another ,-omponent must be designed to tie these entities together into the system.

The parser provides the mechanisms to allow this type of system functionality to occur.

Since Exodus does not provide any type of parser design capabilities, the UNIX tool known

as YACC (for Yet Another Compiler Compiler) will be used for this purpose. The (Iifficulty

lies in establishing the proper grammar rules for system operation as a whole.

The fifth major area of concern involves the generation of the E source code to

execute the query. Although this is situated after the query optimizer, the optirnizer will

not be of concern in this project. Because of its expected complexity, a doctoral s , ilewt

is developing the optimizer component. Upon exiting the query optimizer, the(quwry

tree has become a plan tree, structured in such a way to efficiently access the (latal);tse

with respect to the current query. Because the data structure is unique to the ColbY

algebra, routines must be developed to accurately walk the plan and its auxiliary list ;and

condition structures, inspecting the information and generating the required source code.

Once all of the source code is generated, the routines dynamically link its object code to

the implemented operator methods. The problem, therefore, is twofold. First, accuratelv

generate the E code and, second, link it with the required operator methods to produce

the executable module.

The final problem focuses on the structure of the relation, which must logically and

physically allow for the nesting of relations. Procedural programming languages have not

traditionally permitted such structures, and DBEs have had to resort to adl hoc measures

1-5

to achieve this end. However, since E is a database system ing,,age, mechanisms a(d,d ti)

C++ appear to bridge the gap between the logical and physical nature of nmeted r,.lati1(uS.

This effort will take advantage of these features to design and implement nested ,truct ,ri, '.

1.2.2 Scope of the Thesis. By indicating the six problem areas of doeignig, ;,id

implementing the nested relational data model within the Exodus framework, the scpe

of this thesis effort was narrowed to achieve this objective. The data dictionary colltall,

enough information to allow proper operation of the database system, while the (al;,d,,g

manager has the routines needed to access the data tables. The routines are able to b

invoked by any other component in the system. Project, select, and natural join are the

operators implemented within the database The parser is able to parse the query into the

proper tree structure as well as allow for the creation of nested relations by the user. Tie

walking routines are able to walk the plan tree and generate the proper E code. dynamically

linking the query to the operator methods. The scope outlined above provides a inirnum

functionality for the nested relational database system.

1.3 Sequence of Presentation

First, the nested relational data model is examined in Chapter II, followed bY a

discussion of the Exodus Extensible Architecture in Chapter Ill. After presentil t.his

background information, the design and implementation of the data modelt under lxo-

dus is demonstrated in Chapter IV. Finally, conclusions are provided on this effort, with

recommendations for future research.

1-6

II. The Nested Relational Data Model

2. 1 Introduction

The relational data model is the primary vehicle for most of today's sophisticat(.d

database management systems. The model is defined within sound mathematical prijici-

ples, and it is this very foundation which permits accurate manipulation of relat iows aid

their corresponding data members. By understanding and applying the relationial filtic-

tions to these abstract structures, an appreciation of the model's strerngths d'rnonstrates

an increasing role for further extension. New data models are a result of these extensions.

including the nested relational data model.

Since the relational data model lends cred-nce to the nested relational data model,

features unique to this traditional model must initially be examined. A constructive ap-

proach of this type attempts to eliminate misconceptions of the nested relational data

model. Once an appropriate amount of background is presented for the traditional rela-

tional data model, the properties of the extended version of this model will be discussed.

2.2 The Relational Data .Model

The structure of the relational data model, sometimes prefixed by the "'convenitoimal"

or "traditional" adjectives, may be visualized in two different forms. First, the logical

nature of the data model is the most recognizeable structure in the object-oriented arena.

indicating some particular entity with its various properties. The abstractness of the

model allows the mapping of traits of real-world objects into the software domlain, where

the objects may then be invoked to behave as if in the real-world. Second. the physical

nature of the data model attempts to separate these traits into a straightforward, tabular

format. Instead of abstractly visualizing an object with specific properties unique to the

object, the physical table or relation permits actual object data to be compared to other

objects with similar properties.

A table of values is the most likely representation of an object modeled under the

relational data model. Rows and columns are essential elements of a relation, where each

column indicates a particular attribute of an object, while each row represents an entire

2-1

instance of an object defined by the relation. Attributes must rely on already defined t'vv,

such as the integer, float, or character types available in most software environments. Of

course these types may represent other types or instances in a higher abstract sense. "or

instance, the integer '1' is commonly a stand-in for the Boolean variable "TRUE., while "0'

reverts to the Boolean 'FALSE'. In this case, integers are used for the Boclean type.

An example of a relation should help emphasize the logical and physical il;,ulr', it

attempts to model. From a logical standpoint, the relation represents some obj(,ct iII

the real-world domain. An often used object is person since its properties may easily be

understood and subsequently derived. To narrow down the properties attributable to any

one person, the actual person object may be scaled down to a child object, where the

child object most likely has ties to some other object such as an rnploycf object. That

is, the relation defines the attributes of children belonging to employees of some particular

corporation.

To relate each of the child object instances to employee objects presumably residing

elsewhere in the system, one child attribute must be able to directly link its object instanices

to those employee instances having children. For this purpose, the emp.ssn attribute.

representing an employee's social security number, becomes one of the key attributes which

provides uniqueness to the child objects. Other attributes of a child include name, a(ge.

and sex. From the countless possibilities which may define a child, the database requires

only a few attributes central to the application for which the database was developed.

From a physical standpoint the relation consolidates the attributes of the object into

a coherent structure. Columns of the table or relation, shown in Figure 2.1, represents each

of the child attributes, while each of the rows or tuples are the specific children instances.

In this example, there are ten instances of the child object. The attributes, as previously

discussed, must be one of the basic types. The emp-ssn attribute may be an array of

characters or strings, or it can be regarded as an integer with the hyphens inserted at the

time of extraction. In the same way, name is a string, age is an integer, and scr is a single

character, 'M' or 'F'.

The operators of the relational algebra do not specifically model the behavior of the

2-2

empssn name age sex

192-83-7465 Bob 5 M
192-83-7465 Carol 4 F

325-96-0127 Kyle 10 M
325-96-0127 John 12 M
325-96-0127 Lynne 6 F
519-73-3790 Mike 7 M

234-61-9825 Tom 5 M
234-61-9825 Jeremy 4 M
234-61-9825 Tiffany 7 F

234-61-9825 Anele 1 F

Figure 2.1. The child relation.

object itself, but rather they permit data to be extracted from the object or modified

within it. Although this is a shortcoming for an object-oriented development environment

where real-world object properties and behaviors are mapped into the software domain,

the relational operators are well-suited for particular applications. Most of these are ac-

counting and transaction-oriented applications which have made the relational data model

an indispensible tool in the work place.

2.2.1 The Relational Operators. A number of operations in the relational algebra

are possible on relations, including:

" Project

" Select

" Natural Join

" Cartesian Product

" Set Operations

The first three operators are the primary elements necessary for extracting data from

relations. The cartesian product operator is a generalization of the natural join, while the

set operations include union, intersection, difference, and divide. Although the cart(cian

product operator and the set operations provide significant functionality to user queries,

2-3

the first three permit the necessary extraction of data from relations. Codd (6) and Kortlh

(1) provide a good explanation of each of these operators.

A database populated by relations normally representing objects integral to 01m, all-

other in some fashion, may temporarily force these objects together using the join oprtor

and pulling out instances according to some criteria or obtaining a subset of the prolrl'r0tie

of the objects. In other words, the three operators are used in various conibinatiols To)

extract certain data elements from all the existing relations. The conglomeration of oh-

jects in the database defines some environment or entity such as a corporation which llmay

include items such as a product relation and a resources relation in addition to the already

defined child and employee relations.

Because many relations within a particular environment are interrelated, a better

approach is to combine some of the relations into a single one. This would alleviate

using the join operator for two or more relations which are joined for a majority of queries

involving them. However, with the voluminous amounts of data that will most likely result

from such an endeavor, it is better to keep the relations as separate entities to facilitate

more logical query formulation. However, these inter-relationships cannot necessarily be

ignored either. Some method or approach must permit a more logical structure to account

for these dependencies without altering the basic functionality of the three operators.

2.3 The Nested Relational Data Model

Much of the overall structure and behavior of the relational data model is essential

to the underlying framework of the nested relational data model. The relational data

model considers its objects as separate entities organized in a horizontal fashion. The join

operator links the relations whenever query processing requires a combination of the data.

However, a vertical orientation is more appropriate in many of these cases. By trmittiIuq

only one level of abstraction within a database environment, the real-world environlent

which a relational database represents is somewhat skewed. A good possibility exists that

some of the relations should actually be subordinate to other relations to properly iodel

the real-world objects. This is also known as aggregation. Tables situated horizontally are

considered flat relations and are in first normal form (INF). Their data is in a nondecom-

2-4

posable or atomic state. On the other hand, if the relations were to model the real-world.

the database would have to become more vertical, placing relations within relations.

Traditional relations place their emphasis on flat tables and the relational operators,

while OOD considers objects and the functions that may operate on the objects. 'Ihe at-

tempt is to model the behavior within the database system. Nested relations, as comtposite

objects (10), require certain data members and functions. An environment joust p1 rinit

the data members within the object to become the atomic and relation-valued attributes,

while the functions modeling an object's behavior must be found in its nieinber functions.

The relational operators can then also be considered objects, requiring data members to

be in the form of nested relations and member functions, when used in unison, to perform

the operation. This is the concept behind OOD within the database system.

By inserting relations within relations, this vertical orientation suggests the nesting

of relations. According to this scheme, then, a top-level relation represents some particular

real-world object, where its composition is based on subobjects. These subobjects may

either be basic data types that cannot be broken down any further, or they mav be relatiols

which are further comprised of their own particular attributes. In tlis itested struct rlie.

attributes are either nondecomposable or atomic attributes or they are actually relations,

commonly referred to as relation-valued attributes. This nested relation structure, as

opposed to 1NF relations, is known as non-first normal form (-1 NF).

2.3.1 The Nested Relation. Since nested relations are cormprised of relationis and

atomic attributes, the basic relational structure is still the primary building block. lilow-

ever, the nested relational data model, to form its very structure, must provide a mlans

to insert relations in addition to the basic relational operators. Before discussing the

mechanics of these operations, an example is in order.

The nested structure may be illustrated using the two flat relations found in FigE-

tire 2.1 and Figure 2.2. To eliminate the joining of the child and employee relations along

their common attribute, emp.ssn, before applying the other two operators, the child rela-

tion can be inserted as a relation-valued attribute of the employee relation. In l-'igure 2.3,

the employee relation inserts the child relation. Now, all other attributes within the (m-

2-5

dept emp name c mp. ag. emp.ssn
Accounting Washington. A.B. 33 192-83- 71465

Research Lincoln, C.D. 44 234-61-9825
Development Kennedy, E.F. 4 5 319-73-3790
Engineering Carter, G.H. 38 325-96-0127

Figure 2.2. The employee relation.

dept remp.name ernpage emp_.ssn chihlh'-,n
Ichild-name[child-aylr Xs

Acct Washington, A.B. 33 192-83-7,465 Bob 5 .

Carol t '
Eng Carter, G.1I. 38 325-96-0127 Kyle 10 NI

John 12 I N
Lvnne (F

Dev Kennedy, E.F. 45 319-73-3790 Mike 7 %1
Res Lincoln, C.D. 44 234-61-9825 Tom .5 NI

Jeremy I .M

Tiffany 7 F
Anele F

Figure 2.3. The employee nested relation.

ployce relation are atomic, while all attributes within the children subrelation are ako

atomic-valued. In this case, one level of nesting exists within the cmploycc relation.

In Figure 2.3, the emp-ssn disappears within the children attribute since this inlfor-

mation exists within the employee relation. What once required a join operation and ten

tuples, is now condensed into one relation of four tuples. These four tuples are actlially

supertuples, since the children attribute is a set of tuples or subtuples for every tliple of

the employee relation.

2.3.2 The Relational Algebra. Because the relational structure plays an integral

part in the nested relational data model, the relational operations also function on the

nested structure, although in an extended form. Although there are several versions of

the extended relational algebra to choose from, the Colby relational algebra is used in this

thesis. Its apparent simplicity permits easier design and implementation into the query

2-6

tree structure. The three major relational operators - project, select, and naturlr joit

are supported, as well as the set operations. Because the nested relational data model

requires a method of nesting or unnesting a relation at any level of a nested relatioin's

hierarchy, the nest and unnest operators are added to the algebra.

2.3.2.1 The Nest Operator. Although nested relations can be initially stru'-

tured at the time of their creation, the ability to nest attributes within an existing relation

should be permitted. This entails grouping attributes situated at the same level of nesting

and invoking the operator to ne,-t this group of attributes one level deeper.

According to Colby, the nest operator requires three elements. First, an attribute

list indicates the group of attributes "o be nested to some deeper level. The relation main-

taining the said attributes in the list is the second element required for the operator. The

third element represents the new relation-valued attribute for which the list of attributes

will be nested. As an example, to nest the children attributes shown in Figure 2.1 into the

nested vek.ion in Figure 2.3, the mathematical formulation is characterized in the following

in anner:

v { child-name, child-age, sez I (employee) < children >.

2.3.2.2 The Unnest Operator. This operator is the dual to the nest operator.

although performing the reverse operation. It only requires specifying the relation-valued

attribute that is to be unnested. For example, to undo the nesting of Figure 2.3 and obtain

the relation in Figure 2.4 once more, the unnest operator, A, may be used in the following

manner:

pi (employee) < children >.

2.3.2.3 The Project Operator. The project operator requires two elements to

project out the requested attributes of a nested relation. A project list permits the project

operator to reach any attribute, atomic or relation-valued, and project out the contents

of a single column or an entire subrelation. The second element is the source relation

2-7

dept emp name np age t Inp-s.n chi ld (A i h_. ! ,, ,
Accounting Washington, A.B. 33 192-83-7465 Bob 5 i
Accounting Washington, A.B. 33 192-83-7,165l Carol
Engineering Carter, G.H. 38 325-96-0127 Kyh, 1(1 NI
Engineering Carter, G.H. 3s 325-96-0127 John i 12 T I
Engineering Carter, G.1I. 38 325-96-0127 Lynine 77 7

Development Kennedy, E.F. -15 519-73-3790 .\like 7 .\
Research Lincoln, C.D. 44 234- 61 -98 25 Tum __ _ -
Research Lincoln, C.D. .1.4 234-61-9 825 Jeremv NI
Research Lincoln. C.D. .1. 1 23.1-61-9825 Tiffanv 7 F
Research Lincoln, C.D. .. 23-1-61-9S

Figure 2.4. The unnested version of the crplyf relation.

(rnp-nanc , ,hild_11 11711

Washington fo.B. ma
C'arol

C'arter, G.II. KYlIe

John

L~vnne

IKennedy, E.F. Mike

Lincoln. (.D. TOM
Jerenmv

Tiffany
Anele

Figure 2.5. Projecting employee and children imanes.

or a relation resulting from another query. From the nested relation in Fiue2.3. Ili,,

project operator may be used to project out the urp-narne and childiimm attrithutt, 1H

thte following manner:

7r { emp-name, children f child-name I I (emiployee).

The children attribute must be specified in the list to allow the operator to de ,,jil

to the next level of nesting to obtain the data values under the child namt atribelrit e).,-

resulting relation is shown in Figure 2.5.

2.3.2.4 The Scl(ct Opf'rator. The select operator requires eleients similir

to the project operator plus an additional element. Like the project list, the select 1i1t

2-8

dept emp.name emp_ age Emp~ssn children
child name childagy .a i x

Dev Kennedy, E.F. 45 519-73-3790 Mike 7 I
Res Lincoln, C.D. 44 234-61-9825 Tom 5 I

Tiffany 7 !

Figure 2.6. The extended select operator results.

also permits the operator to descend to any depth of the relation. lither a rlathmi or -I

relation resulting from another query provide the source tuples for the oporator. Flinaflv.

conditions or predicates must be able to be specified on the top-level atomic at t rilblits or

on lower-level relations.

For instance, to select those tuples from the employfc relation in which atn emplovee'S

age is greater than forty and the child's age is greater than four will require tie following

formulation:

Cr ((Tnploye') [rnp-age > .10] { childrvn [childay > .11

The top-level condition must Immediately follow the relation spocified within tlie

parenthesis, while lower-level conditions are found in the select list. TIhe r(ilt r.lm,

may be found in Figire 2.6.

2.3.2.5 The Natural Join. A major difference between the tradiiiii l la-

linal algebra natural join and the Colby natural join is the requirement if -cfyi i

jo(in path. This path indicates the attributes on which two relations ()r rlatiim ., s r ii - , ti

from queries may be joined. The path is basically the navigation tool to reach the ,wiit,,I

attributes for the join.

An example of the natural join involves the t mpoyec relation in FiEgure, 2.3 and thIe

school relation in Figure 2.7. The school relation maintains the student data for all tiii.,o

attending the local school district. The formulation of the join is as fi dlhws:

r (employee) childrrn } (school).

Figure 2.X is the relation resulting from the join

2-9

school Icetel children
child-name child-age stj

North Mid John 12 M
Mary 11 F

[-Larry 13 M
South Elem Cassy 7 F

Kyle 10 M
Lynne 6 F

Green Elem Pam 8 F

Charles 7 1
Mlike 7 1

Nancy 9 F

Figiure 2.7. The school relation.

,lcpt ___pna__e __pae __pssn children !.'hoI i /
child name child-agt S(X

Eng Carter 48 325-96- John 12 NI North Mid
-0127 KyWe 10 5I South Elil

Lvn ne 6 F
Dev Kennedy 45 519-73- Mike 7 NI Green lI1r

Figure 2.8. The emnplovee relation joined to the school rolation.

2-10

2.4 Summary

The the nested relational data model obtains most of its structure ald fmi oality from th,.

traditional relational model. The operators in the nested model require exterisi .,ms to allow tlhii

to descend to nested relations. In addition to extending the relational operators. the tt,,,t i:,1

also uses a nest and unnest operator to allow some restructuring of existing rlatilS

2-11

III. The Exodus Extensible Database Architectau(

3.1 Introduction

As an extensible database system, the Exodus architecture is not a dataa.e sv.om ii

and of itself, but rather an integrated package of software tools required for dat aba>s. dw,'-i

and implementation. The tools encompass the development of the primary oinimiitI

necessary to implement a database system for a specific application or a particular dIit

model. For a database system under consideration, a database engineer (I)B) til1,st d,.>i"1,

and implement a host of system components as well as a number of auxiliary funuctimnis t()

satisfy data model or user requirements. In order to understand the fuunctionalitv of all

required system components, the DBE must be aware of how each of the Exodus software

tools will assist in creating or generating the system components for the task at hand.

An analysis of a database system incorporating the rested relational data model

exhibits a close resemblance to the structure of traditional relational database systems.

To design and implement such a system, a number of the same components are requirod

with similar characteristics. However, an assessment of each of the components reveals an

extension of conventional design features to account for the nesting of relations. Vinder t le

Exodus environment, the DBE is concerned with the following system components:

" Parser

" Catalog Manager

" Data Dictionary or Schema

" Query Optimizer

" Query Compiler

" E Compiler

• Operator Methods

* Access Methods

* Storage Manager

"! I

Query

S Query Plan

Parser Tree Qu~t ery Tree E Code

Op i i e Generato3

TypeQur

Table CExecInfo- , C d

Figure 3Typ Table s esign.
S Information Opeato

SCatal°o Me t h d s

[MgrJ Ex__ecutable
Code

,Database

Figure 3.1. A typical Exodus system design.

* Database

A typical system design may be found in Figure 3.1.

An advantage of Exodus focuses on component reiiseability, a featilre of extenli he

architectures permitting rapid development of other systems with similar characteritCS.

The amount of implementation ranges from components produced via input-driven gener-

ators to components entirely designed and implemented by the DBE. Properly analyzing

system requirements should lend itself to indicating possible areas of component reuso.

thereby eliminating duplication of past effort.

The standardization of components for database systems therefore prt)vides shml,

3-2

credence to software engineering principles during system requirements analysis. hlhe FxO-

dus tools provide a frame of reference from which to compose and decompose the inteni(dd(

database system while ascertaining its requirements. The building blocks may be tested

according to various test cases to ensure the viability of a particular component under some

requirement essential toward the make up of the data model or application. With this in

mind, the nested relational data model has unique requirements which must be taken into

account at the component level before assembling the entire system. A breakout of each

of the Exodus components with respect to the requirements of the nested relational data

model provides an outline of the DBE's preliminary design tasks before advancing in1to

detailed design and subsequent implementation.

3.2 The Parser

The main purpose of the paser is to link the user with the database system. Specif-

ically, the user, by way if a data manipulation language and a query language, may access

the catalog manager and the query optimizer. These two components are important in

thiir own respect and will be examined in upcoming sections. The parser, by providing

the user-interface, translates human-understandable language to one more conducive to

database system management.

The user communicates through a standard set of commands, issuing directives which

engage the mechanisms of the database. These commands are normally encapsulated

into an interface referred to as a query language. A number of query languages have

been developed and implemented in traditional relational systems, so it is no wonder that

extensions of such languages have been proposed for the nested relational data model. Of

the relational query languages, SQL is the most popular to date and extended languages

such as SQL/NF for nested relations provide a strong backdrop for implementing the nested

ijiodel. The DBE must choose an appropriate query language or develop one reflecting the

nature of nested relations. Once it is chosen, a high-level parser may be designed and

implemented to incorporate the query language.

Exodus does not provide a parser or scanner as a development tool, so an alterna-

tive must be found. For this purpose, the popular UNIX tools of YAC(' (Yet Another

3-3

Compiler Compiler) and LEX (Lexical Analyzer) are the most commonly used tools. LEX

supports the capability to scan the input for specific commands necessary to indicate to

the system what is requested. For instance, if a command to create a new relation was war-

ranted, the words create relation will possibly have the associated tokens of T('E.\E'F

TRELATION, signifying that a create and relation token are to be sent to the parsr.

Since numeric and character data are essential for database operation, generic scanner

formulas for floats, integers, and strings must be developed. However, since scanners with

this type of data have been developed before, their formulation will closely match earlier

representations found in other scanners. Other types of input required for scanning in-

clude the equality and inequality operators, the set operators, data dictionary commands.

and query commands. Tokens will have to be returned for each one of these commands

or inputs. Regarded as a single component, the scanner is the first subcomponent of tile

interface with the database user, and tokens from user commands are sent to tile parser

subcomponent for assembling the user's wishes into database commands. In other words,

the scanner and parser subcomponents comprise the "parser" component, since the parser

subcomponent cannot operate without a scanning operation.

Once a token is sent from the lexical analyzer, the parser attempts to match one

of the grammar rules containing the tokens within the parser. YACC uses a left to right

resolution method to determine what the user's command entails. Within each of the

grammar rules, actions may be taken to direct the database system to carry out a specific

operation.

To illustrate this in more detail, an examination from the earlier create relation

example is in order. Once the TCREATE and TRELATION tokens have been sent to

the parser, the parser will most likely have some action to perform. In this case, the actions

invoke procedures to allocate and input a relation. Once the operations are completed, the

control returns to the user by way of the parser.

3.3 The Catalog Manager

The catalog ma lager is the mechanism responsible for ensuring proper organization

of relations within the database. Data tables which identify and track previously created

3-4

relations and their attributes are overseen by this component. An essential task includes

routing relation and attribute identifiers to their correct position within the data tables.

Whenever a new database is created or a current one opened, all references to any of

the relations and their associated attributes are handled by the mechanisms implemented

by the catalog manager. The catalog manager's tables must be linked in some malier

to retain the correspondence among the various identifiers and permit an efficient ald

accurate traversal of all tables for search of fundamental system data. A design (Icisioit

may lie in how to link the tables together. Methods such as using pointers or indxes to

match table columns together are simple and establish a clean connection between tables.

In comparison to traditional relational database system catalog managers, many sim-

ilarities exist for catalog management of nested relations. For a nested relational database

system, the catalog manager has to ensure all relations and nested relations are handled

reliably and without confusion as to what is a relation and what is a relation-valued at-

tribute embedded within a relation. That is, nested relations cannot be confused with

top-level relations or schemas. In addition, duplicate atomic or relation-valued attribute

identifiers must always be clearly differentiated to eliminate any confusion which may ari.se

among the various relations in the data dictionary.

The catalog manager may be designed in various ways, but it should take advantage

of the resident data model's own structure. For instance, relational database systems nor-

mally use relations as the catalog manager's vehicle for maintaining user-defined relationls

within the database system itself(1). With this perspective, the nested rel&i.juai database

system should take advantage of nesting certain attributes of its catalog tables to maniage

database tables defined by users of the system. Catalog manager tables can be designed

to maintain information of relations within the database, maintain all the attributes of

every relation within the database, and maintain those relation-valued attributes identi-

fying nested relations within the database. Information required by the catalog manager

to load its tables will be obtained through the scanning and parsing of relation creationl

commands. Once this information is passed from the scanner, through the parser, and to

the catalog manager, the data must be input into its tables in a particular fornat defiled

within the system and commonly referred to as the data dictionary.

3-5

3.4 The Data Dictionary

The data dictionary is a component operating in conjunction with the catalog man-

ager to support the organization of symbol identifiers and statistical information necessary

to maintain relations within the database system. Symbol identifiers include all unique

entities defined by database users which may describe individual relations or parts of a re-

lation. Information associated with each identifier, characterizes the state of the particular

entity and its placement with respect to all other symbols within the data dictionary.

There are two primary types of data available within the data dictionary. First.

atomic data will normally consist of one of the three basic data types found in most

programming languages: integer, float, or character. Second, a database must distinguish

the different table or relation types available for relation creation (12). A table type defines

the structure of relation that may be used for future instantiation as relation or a relation-

valued attribute. That is, it provides the relation definition which is to be nested within

another relation. A table type is considered to be defined on the fly because it is a new

entry into the database and uses other data types for its attributes.

The symbol table is comprised of the table types defined for the nested relational

database system along with their individual atomic or relation-valued attributes. Once

a relation is created, using of the existing table types, the catalog manager parses the

relation information and routes it to the relation table rather than the symbol table.

As expressed earlier, the data dictionary is a repository of symbol identifiers and

associated information characterizing each of the symbols in the symbol table. The same

requirements hold true for the data dictionary's relation table. Several of these elements in

combination with each other provide the uniqueness each symbol or relation requires for the

catalog manager to distinguish among the considerable amount of entries possible within

the data dictionary. The design of any type of database system will require a minimum

set of table characteristics to enable the catalog manager to easily access the necessary

symbol or relation and acquire the information requested by another system component.

Under the nested relational database structure, the attributes required for these two tables

normally include the index, name, data type, and any reference to another entity in the

3-6

same table or the other table.

3.4.1 Name. One property to which the user is most likely to relate is the name of

the table entry. Upon entry of a table type or relation, the user's chosen name is added to

the catalog manager tables.

The use of a name does permit useful dissemination of data dictiohdr. informiti mi.

although it may be used more than once among the attributes of the defined table types inI

the symbol table. Othei attributes are acquired for each of the table entries to elimi;v

any ambiguity during catalog manager scans of the table data.

3.4.2 Type. A system designed under an object-oriented environment emphasizes

strong typing facilities. Data typing lends itself best to mapping real-world problems and

their solution domains into the corresponding software domains. The symbol table ensures

all data types are preserved as long as the object is defined in the data dictionary.

3.4.3 Level. The level of a symbol in the symbol table provides further infoirmat ion

about a specific object in the database system. There are two basic levels available for an

object within the nested relational data model. Although a relation may have any miber

of nesting levels, the only distinction among the elements within the symbol table focuses

upon the relationhip between a table type and its attributes, whether atomic or relation-

valued. Therefore, the inherent number of levels is two. That is, a symbol is at the ft/b/C

or the attribute level. The level property attempts to augment the attribute property hy

supporting the distinction between table symbols and relation-valued symbols. Level is of

no concern within the relation table.

3.4.4 Number. This data dictionary attribute capsulizes the definitioni of a table

type through application of a quantitative measure. After parsing of the table type defi ii-

tion, the number of attributes, atomic and relation-valued, provide a gauge as to the size

of the relation. Use of a table's size number allows succinct scans of relations and their

nested relations. In addition to using the number as a size metric for table types, the >i,

of atomic attributes defined as character arrays may also be stored here.

3-7

3.4.5 Parent. To further enhance the cohesiveness of the data dictionary. 'a,;L

of the items in the symbol table bears a direct reference to its defining table tYpe. III

conjunction with the level designation, the parent attribute identifies a particular svilbl',

table type. Symbols at the table level use an arbitrary level designator since there is io

defining table type or database at this point. If more than one database is allowed to ,,xist

within the system, then each table level attribute may enter the name of the database in

which it resides.

A number of other statistics may increase the effectiveness of the data dictioinary.

but the above attributes apparently provide adequate coverage of necessary data elemvts

within the database. The number of attributes per table entry is small enough not to over-

burden the database system, while providing a fully functional nested relational database

system.

3.5 Query Optimizer

The query optimizer is a standard system component capable of transforming a 1,ser's

input query tree into an efficient query access plan. In effect, the component optimizes

the information embedded within the query in accordance with rules devised by the DME

for a nested relational database system. The query tree is formed according to)BE data

structures during parsing of the input query. As the tree progresses through the optimnizer.

information within the tree nodes are used for optimization purposes, and the resulting

plan is deposited at the output of the component.

The query tree is built node-by-node based upon information parsed from the user's

database request. The tree is linked together by means of query nodes, each node repro-

senting the objective of a relational algebra operator.

Because the nested relational data model relies upon an extended relational algebra

as well as the nest and unnest operators, each node must earmark enough space for each

of the operators and their respective list structures. Depending upon the specific operator.

lists will be necessary data structures to hold auxiliary data permitting the operators to

descend relations and Lheir relation-valued attributes under the current query's consideria-

3-8

tion. The query tree is a binary structure comprised of query or tree nodes, with bra jicheo.

representing the list structures, extending from each of these tree nodes. As the tree, is.

traversed within the optimizer, the lists, if present, will also have to be navigated hof',r,

departing the node.

The optimizer component itself is generated by the Exodus tool known as the opti-

mizer generator. The generator is a rule-based tool requiring an input of four elemelts to

produce the necessary optimizer for a specific data model or application. As already stated.

the operators are extended versions of the traditional relational algebra and the additioni

of the nest and unnest operators. Briefly, the four elements, placed in a description file

include:

" Gperators.

" Operator methods.

" Transformation rules.

" Implementation rules.

The operators are the actual operators required for the nested relational data model.

These include at least the following operators:

• Project

" Select

" Join

" Nest

" Unnest

Other operators which will factor into the full-fledged model include the difference.

the union, and the intersection operators. To provide more efficient operations within

this particular data model, these operators will eventually need to be included during the

development of the database system since they are necessary for set functionality.

3-9

In order to use operators, their implementations must be compiled and readily ;dvtil-

able as object modules within the system. The implementations may be riureros f.,r

each one of the operators. For example, the project operator may use either a file scan or

a filtering implementation. Each implementation is known as an operator method and iS

consequently included in the description file of the optimizer generator.

The transformation and implementation rules deal primarily with how th, oor~ltr

and its methods are to be used. Depending upon the nature of the query, certainl nierluds

may or may not be possible. If the query is under optimization. these two rule, iII tih

description file are scanned to determine which methods are permissible. and of ths,

permissible ones, which one is the most efficient. Again, the DBE determines what ruiles

are required for these last two categories of the description file.

After the query tree undergoes a transformation according to the rules documented

in the description file, the query is still in the form of a binary tree but the operators have

been replaced by operator methods. The query is now closer to an actual implementation

and another level of translation is required to obtain the actual source code for compilatio,.

The query access plan, as it is now known, is passed to the query compiler.

Since the query optimization phase of the database system is extremely im1portant.

its implementation is as important as the nested relational data model itself. Tih '_oa!l f

developing the data model is to seek increased performance in comparison to the traditional

rolational data model. Because of this aspect of the research, the optimizer rules are uinder

design and implementation by another student and not within the scope of this project.

3.6 Query Compiler

The incoming query access plan (or plan for short) is now in an efficient structure

ready for processing. The query compiler is ready to compile the generated E code int,

an object module. However, the plan, still in a tree-structure, must be transformed itnto F,

source code. That is, the tree must be "walked" to generate the E code.

The translation of the plan into E source code is performed by an important function

referred to as the tree-to-E routine. The tree-to-E routine takes one node at a time and

3-10

transforms its data into an E source file. At each node, the operator method rnilit ho

extracted and sent to the E file. Embedded within the plan are commands to forri all

intermediate relations or temporary relations if necessary, and the final relation infrrd

from the query. Intermediate relations may have to be established between upstream i:il

downstream query nodes to store the extracted data. The tree-to-E routine must g eir:te

the structures for these intermediate and final relations.

The tree-to-E routine uses a depth-first traversal of the plan to basically climb the t reo

from bottom to top. This is necessary because the bottom nodes contain the referenc(,s

to the system's relation tables which all user queries must intially access. Betwee, The

other plan nodes, the data is sent downstream for further processing. In other words, the

extracted information is sent to the next upper node in the plan tree. The development

of each of the intermediate structures depends upon the auxiliary information associated

with each of the plan nodes.

The auxiliary nodes attached to each of the query nodes support logical navigation

throughout the nested relations. The nested relational data model requires it dscet

4 some fashion into a top-level relation to the appropriate nested relation or relation-

valued attribute for which the operator under consideration must apply its method. The

auxiliary nodes maintain this navigation information to guide the operator to the (1 1,eiied

nested relation as well as atomic attributes. Similar to walking the plan tree, the tree-to- I

routine traverses the auxiliary node lists to translate this information into operations to

be performed upon atomic and relation-valued attributes.

Eventually the tree-to-E routine reaches the top node of the plan tree. Once ;ill Ihe

information in the auxiliary nodes are processed, the main routine must be appended to ;111

other query declarations and definitions extracted from the plan tree. Because thet qlry

is the primary impetus of compiling all modules into a cohesive executable modul,, lie

addition of the main function occurs at this final stage of E code generation. The query

is finally ready for transfer into the E compiler. The object modules and the generaied

query E code are gathered together for compilation together within the system's compiler.

3-11

3. 7 E Compiler

The query is now located in what may be considered the "-backend" of the daitabasc

system. At this point, no more processing of the query will tran-dire since it is in it,

most efficient state. The tasks at hand focus on compiling the generated F code ,ili

then linking and loading it with the necessary object modules for query executiom. Ile

operator and access methods are implemented at this point and their object moduiles oxi t

in an active mode for any number of compilations with user queries. That is, t I, qu,,rY.

after compilation, will be dynamically linked to the E run-time system (ERTS) (2). 1!w,

relations within the database system are persistent. so the compilation must occur %%ith

the E compiler. Just linking the E library with the C compiler will not permit tie liaiidles

to storage objects to be coupled with the executable module. All compilation. linking, and

loading must occur employing the E compiler.

The target of the executable module is the Exodus storage manager. Alllioigh the

nested relational database system is an executable module developed using the Exodus

tools, the query is also an executable module requiring Exodus resources. The datit!,is,'

program must manage the query in the form of a smaller program, directing tle e cit

module to a file for driving the query. The system must set up a file to deposit lie lo;,id,

code before execution of the query. Thus, a primary task of the "backeid" is to, liiiLdle

system buffers and files for transferring of modules before final query execution.

3.8 Opcrator Methods

Since a query tree produced by the parser only contains the relational operators

required for the user's query, methods must be maintained in the ERTS to limplbmit

the operations. However, each of the nested relational algebra operators may contain ;t:l

number of methods to implement it. Two of the most popular methods perforil sorwiw

form of file scan of the relations in the storage manager, or a tuple filtering tchiitiie Io

create a stream of data leading from one or more relations into one final relation. ()tice

the BIE designs and implements the operator methods, the object modules remain in tie

"backend" for all transient queries.

3-12

3.9 Access Methods

Along with operator methods, access methods such as B4- trees miay enhanco ,h,

efficiency of performing the query. Just as the operator methods, the access milthod,

must be designed and implemented so that their objects will be available at Ile tithet

query compilation. For nested relations, access methods will still be operatimg on relal i,,Ii.

although navigation methods embedded within the access plan exitting the qcry ,p iI .r

must guide the access method to the correct attribute. Just as with the operator il,'!fl,,s.

the E compiler links and loads the necessary access methods to the specific query.

3.10 Storage Manager

The storage manager is the component required to manage all storage objects in-

stantiated within the database system. A number of functions are available to the DBE

to handle specific objects. These fuhictions allow the DBE to manipulate objects at the

byte level, inserting and deleting bytes as deemed necessary. To enhance pertormance of

a particular data model, storage object primitives may be used to direct database systein

operations at this level. However, to initially run the system at a higher-level of abstrac-

tion for the nested relational data model, this level is not tampered with since the stnraoge

manager adequately creates and modifies objects as required.

1. 11 Database

The database works in conjunction with the storage manager to extract the ieces,,arv
information from defiined relations. The relations are instantiated objects permittig ian

arbitrary level of nesting to represent the nested relational data model.

3.12 Summary

The Exodus extensible architecture is comprised of tools and components roquired

for designing a database system with respect to a specific application or data model.

This research effort uses this development effort to cons'ruct a nested relational datahase

management system.

3- 13

IV. Design and IMph(mcntation

4. 1 Nested Relation

A primary objective for implementing the nested relational data model is to inr,-

system performance over other systems for non-traditional database applicatfil:,. I i:H

performance translates into efficient retrieval of information with respect to othwr t 1,;iIt

mlodels such as the traditional relational data model, the network imodel. anii tiI .1i-

chical model. In addition to efficiency, the data model lends itself well to objct-oriontod

design (001)) (3). an increasingly popular methodology for transformation of roal-wu,,d

problems into the software domain. Data modeling of composite objects (10) al-o reli, sm MI

the concept of nested relations.

Because of the relatively new approach of OOD and its correspondinig languages

(Ada. C++, Smalltalk), the design and implementation of nested relations iams fociusd on

other methodologies. Each of these may rely on such techniques as the physical storage,

of tile data structures maintaining the data of a composite object, rat her tIhanl the !)ica!

nature of the model. The logical structure of nested relations is not propagated throughmut

the entire system, a major goal of this thesis.

The Exodus database system's programming language allows for the 1)lacniieil tof

identically defined objects within a collection. In (2) and (5), dbclass's and dbstrcl',

are declared as collections of structures, where a structure represents tlhe attriul> Ut

a relation. The collection is actually a relation, where the structures are tupls I,)f I,

relation.

Instead of just placing single, atomic attributes within a structure, the colic! oi

construct is also allowed within a structure. In this manner, it is possible to i1 1i(1 ,k t

the concept of nested relations. Exodus permits the data model to have a logical equi Valllt

using this construct.

In addition to definiag nested relations via collections, the logical nature of I II;i a

structure does propagate throughout all components comprising the system. Houtilkles

passing relation arguments can expect the same identical data structure throm igout tIhe

entire svstem, from the catalog manager to the storage manager.

4- 1

dbstruct child {
dbchar name [20];
dbint age;
dbchar sex [2];

public:
child(char *, int, char *);

char * get _nameo;
int get_ ageo;
char getsexo;

Figure 4.1. The child relation specification.

4.1.1 Implementation. The design of the nested relation calls for a simple, efficient,

and logical method of translating the abstract concept of nested relations into the software

domain. Exodus adds several constructs to the C++ programming language which permit

such a definition. The collection construct and several associated commands guide the

development of the nested relation.

The previously defined relations in Chapter 2 are used in the foregoing exampho,-

to illustrate implementation procedures for a nested relation. The child relation fould

in Figure 2.1, requires specifying its attributes using a structure construct. Since the

relation is to be persistent, the structure must be prefixed with the two characters "

Several other syntactic peculiarities distinguish Exodus structure definition from C++ and

C structures and will be noted as necessary.

The structure definition for the child relation is shown in Figure 4.1. As part of

the specification, private and public members exist to preserve data hiding features. The

three private data elements are the attributes of the relation, while the member functins

perform the insertion of data and access to each of the data elements. The constructor

requires the three data types for the data elements when allocating space for a tuple. Sine

the member functions are public, they permit access to the relation data.

Tho semicolon appended to the dbstruct body is different than C. where none is requirt,.

The implementation of the member functions are found in a -.e" file. In Fi-)gure 1.2,

these functions basically use assignment of data from a dummy variable into the dat a

4-2

child: :child(char * n, int a, char s)

char * dastl = name;
while(*destl++ = n++);

age = a;
char * dest2 = sex;
while(*dest2++ = *n++);

char * child: :get-name() {
dbchar * source = name;

char * dest = new char[20];
while(*dest++ = source++);

return(&dest [0]);

I

int child: :get.age() {
return(age);

}

char child: :get.sex() {
char * source = sex;

char * dest = new char[2];
while(*dest++ = *source++);

return (dest [0]);

Figure 4.2. Member function implementation for child relation.

member. A character-by-character transfer is used for string data. Exodus also permnits

the ease of implicitly converting "db" types to non-db ones during simple assignment. This

allows the easy access and conversion of data for use in other routines. The double coloi,

::", associates each object with its member functions.

Once the child relation is specified, it may be used within other structure definitiols.

To nest the child relation within the employee relation, a collection of child structures

becomes the relation-valued attribute children. Figure 4.3 illustrates the (mploytr relatinj.

The definition of the collection is a two-step process. First, a (lbclass typ(, 11tu1st

be specified for the collection of child tuples. Second, the children attribu~te is declarod

as the collection type childRVA. The "RVA" suffix is an abbreviation for "'relation-vali,,d

.1-3

dbstruct employee {
dbchar dept [5] ;
dbchar name [20];
dbint age;

dbchar ssn[11];
dbclass childRVA: collection [child];

childRVA children;

public:
employee(char *, char *, int, char *);
char * get.dept();
char * getnameo;
int get-ageo;

char * get-ssno;

Figure 4.3. The nested relation specification for employee.

dbclass employee-rel:collection[employee];

persistent employee.rel employees;

Figure 4.4. Declaration of a persistent employees relation.

attribute."

The member functions refer to only the atomic attributes of the relation, while the

collection of child structures are referenced by the C address-of operator, -&". By latching

to the address of a particular employee tuple via the & operator, its child tuples may be

further referenced, with all the member functions of the child object visible to the ernployce

object. Thus, the recursive descent into nested relations is primarily possible by using the

& operator.

The employee relation is actually a collection of these structures, so the letter "'s" is

appended to employee and a persistent object is declared as this collection of structures,

shown in Figure 4.4.

Whenever the object is to be used in some application or query, an external variable

declaration is used in the source file requiring the relation. The keywords "'persistent" and

'IemployeeRVA"(in this example) must also be included in the "extern" declaration.

4-4

4.2 The Parser

The parsing component drives the various functions of the database system. Several

functions pertaining to the catalog manager provide input to the data dictionary, while a

number of other procedures involve the structuring of the query tree. [he parser passes t he

query tree to the query optimizer, while the query access plan is sent to the E source code

translation routines via this componenL. In essence, this parser steers the functionality of

the system.

Although Exodus expects a parser, no tool or editor is provided in developing tit,,

component. The UNIX tool, YACC, is a suggested instrument for constructing this el-

ement, as it was also used in the Exrel relational database system. YACC translates

grammar rules in Backus-Nauer Form into the C programming language. Since E-specific

language constructs cannot be used within a YACC file, the routines invoked within the

parser must reside within an E file.

In modularizing the functionality of the parser, grammar rules separate the routines

of the different components. Those procedures interacting with the catalog manager ,are

grouped under data definition language statements, whereas query statements contain the

query tree building routines. These latter statements guide the final query tree to the

query optimizer, and pass the optimizer's output to the E source code routines. Upon

execution of the query, the parser regains control of the system.

4.2.1 Implementation. The function of the parser is two-fold. First, it must interact

with the catalog manager to insert data definitions into the data dictionary. Second. it

controls the parsing of the query into a query tree representing the Colby relational algebra

for nested relations. Since the catalog manager and the query tree structure rely on C++

and E constructs, the parser is function-driven, passing the necessary operands to their

appropriate destinations.

Two separate data definition commands are possible when interacting with tht, caIt-

alog manager. To create the table types, create type prefixes the type information. InI

order to enter the child table types into the data dictionary, the following command is used

for this purpose:

4-5

create type

child - (name:char(20), age:int, sex:char(2))

create type

employee = (dept:char(5), name:char(20), age:int,

ssn:char(11), children:child)

T1his information is placed in the data dictionary's symbol table as discussed below.

The second data definition command permits the declaration of actual nested re-

lations for the database via the keywords create table. Foir example. to declare the

employees relation, the command is used in the following manner:

create table

employees :employee.

As with the symbol table, the relation table maintaining the information for relations

residing in the database is discussed below. The data for the relation must be present in

a UNIX file, laid out in the following format:

[top-level attr, top-level attr, ... { (nested attrs) ...

An example of this format, from l.,e employees relation, may be illustrated in the

following way:

[Acct, Washington A.B., 33, 192-83-7465 { (Bob,S,M) (Carol,4,F)

E Eng, Carter G.H., 38, 325-96-0127 { (Kyle,10,M) (John,12,M)

(Lynne,6,M) }]

[Dev, Kennedy E.F., 45, 519-73-3790 { (Mike,7,M) }]

[Res, Lincoln C.D., 44, 234-61-9825 { (Tom,S,M) (Jeremy,4,M)

(Tiffany,7,F) (Anele,1,F) }]

After declaring the employees relation, the appropriate header files are construct,(d

and implementation routines invoked to insert the data into the object.

4-6

The parser must assist in building the query tree structure for the query optimizer.

Since there are three possible operators, the parser must recognize the following three

query formats:

PJ { project list } (relation or query)

SL (relation or query) C condition] f select list }

NJ (relation or query) { join path I (relation or query)

These symbols represent the project, select, and natural join operators, respectivly.

Within parenthesis, another query may be nested instead of a relation, forming the s,-

quence of relational operators for the query tree.

The parser is concerned with invoking the appropriate functions and passing the

correct arguments. All three operators must construct an operator list, although the

natural join operator list is known as a "join path." The parser passes the given relation-

valued and atomic attributes with the make list() function.

For each of the three operators, a query node must be created and the operator

inserted into the correct portion of the node. The parser passes the operator to the query

tree building routines through the function makeqNode(. If a relation name is part of

the query, rather than a nested query, the name is also passed to the query node.

If a selection operator is undergoing parsing, the conditions or predicates also require

separate predicate nodes. The square brackets delimiting a condition indicate that the

enclosed arguments must be allocated space through the function call, makepred(). This

function passes information regarding attribute names, the operator to be used (=. -, <

...), and the criteria to match the attribute against.

4.3 The Catalog Manager and Data Dictionary

An accurate account of all tables and their types must be maintained by the catalog

manager component. The data elements comprising the data dictionary are placed into

tables by the catalog manager. The use of C++ constructs allows easy insertion of data

into the tables, as well as rapid access of the data.

4-7

name level type numb parent nest type
child SCHEME ONTHEFLY 3 SYSTEM none
name ATTR CHAR 20 child none
age ATTR INT -1 child none
sex ATTR CHAR I child none

employee SCHEME ONTHEFLY 5 SYSTEM none
dept ATTR CHAR 5 employee none
name ATTR CHAR 20 employee none
age ATTR INT -1 employee none
ssn ATTR CHAR 11 employee none

children ATTR RVA 3 employee child

Figure 4.5. The Symbol Table.

Two data definition commands link the parser with the catalog manager. First, table

types must be created before actual relations. The parser passes the attributes for a table

type to the catalog manager, creating a symbol for the table type and its attributes. This

includes relation-valued, as well as atomic attributes. Each symbol contains information

to distinguish it from other symbols in the table, the attributes of that table representing

the elements of the symbol table.

The second data definition command is used to insert relations into a second data

dictionary table. Although a table type, as defined in the symbol table, refers to a particlkiar

relational structure, any number of actual objects may be declared as one of these table

types. Once a table or relation is declared to be one of these table types, several routines

are involved to construct a file to read in the data for the new relation. The relation

data dictionary table must follow the progress of each created relation ensuring that its

information coincides with that of the actual relation.

4.3.1 Implementation. The catalog manager receives data definition argulnits

from the parser's create type and create table commands. Two tables receive this data:

the symbol table for table type information and the relation table for relations persisting,

in the database. From the child and employee table types and the employees relation, the

symbol and relation tables appear as in Figure 4.5 and Figure 4.6.

4-8

J relation name table type
employees employee

Figure 4.6. The Relation Table.

Since both tables are defined as collections, member functions are used by ot her

components to access and obtain the necessary data.

4.4 The Query Tree

As an input object for the query optimizer, the query tree must be constructed

to adhere to the optimizer's requirements. However, several parameters are flexible and

permit the DBE to build the tree with a particular relational algebra in mind. The tree

itself is nothing more than a series of query nodes linked together to logically access the

database with respect to the relational operators.

Each query node represents a relational operator in the relational algebra, in this case

the Colby algebra. One node may point to any number of other nodes, although this arity

is normally set to two. This accounts for the fact that the standard relational operators

are either unary (project, select) or binary (natural join). Besides the relational operator

and the arity, the node must contain argument information. The argument allocates space

for relation names, an operator list, and select;on condition or predicate.

Since the argument provides the information for the relational operator for which the

node was created, this requires additional design. Since the Colby algebra requires operator

lists to recusively descend nested relations, the argument operator list must maintain this

particular information.

In addition to the operator list branching out from the argument list structure, a

selection condition may also form another branch. If a condition is applied to the top-level

attributes of a relation, the argument selection data element points to the data structure

maintaining this condition.

To construct the auxiliary branches for the operator lists and top-level conditions,

two new actors must supplement the query tree structure. The operator list requires a list

4-9

operator

argument
input[O] I input[l]

Figure 4.7. The QUERY node.

Figure 4.8. The ARGUMENT substructure.

node to maintain information of attributes to be projected or navigated across to reach

other attributes. A predicate node is used to maintain information about attributes against

which condition criteria are applied.

The query, as entered by the user and subsequently separated into query nodes by the

parser, is formed in a top-to-bottom structure. The top node represents the first relational

operator entered, while the bottom node requires information for the relation or relations

involved within the query.

4.4.1 Implementation. The query tree requires three separate nodes for its con-

struction. First, the query node is made of the elements found in Figure 4.W.

The operator is defined as a long integer, the two input elements as pointers to (tuery

nodes, and argument is a multiple element structure as defined in Figure 4.8.

"Name" is a character array for the relation that the relational operator is to operate

on, "pred" is a pointer to a predicate, and "list" is a pointer to an operator list node.

The predicate node is structured as shown in Figure 4.9. The "op" element is a long

integer, while the "left" and "right" elements are pointers to additional predicate nodes.

The list node, illustrated in Figure 4.10, maintains the information to navigate a

nested relation. An "attribute descriptor" provides information for the attribute the node

represents, the "condition" element points to a predicate, the "sublist" points to a nested

4-I0

Sleft Iright
Figure 4.9. The PRED node.

attr I cond I sublist I next

Figure 4.10. The LIST node.

relation, and the "next" element points to an attribute at the same level of nesting.

An example of a tree structure found in Figure 4.11, represents the following query

pertaining to the employees relation:

PJ {name, children {name}} (SL (employees) [age=33]

{children [age=5] }}

The resulting relation is shown in Figure 4.12.

Once the parser passes this structure to the query optimizer the optimizer transforins

it into a query access plan.

4.5 The E Source Code Generator

The query tree structure will ultimately be transformed into a query access plan

structure by the query optimizer. The plan represents the most efficient access into the

database. The structure of the plan is similar to the query tree, with apparently minor

changes to the primary node. Instead of an operator data element, the plan node defines an

operator method data element. In the query tree, the relational operator is regarded in an

abstract sense, while the plan's operator method represents the physical implementation

of the operator. They include file scan, stream, and filtering methods, depending upon the

operator. Other than the method element, plan nodes also require an argument element

and pointers to additional plan nodes.

4-11

Q IClildren Name

Name i i

Select

Cidren

L age

Get age 5

:employees

Null I Null1

Figure 4.11. A query tree structure.

4-12

crn m childrer

Washington A.B. Bob

Figure 4.12. The resulting relation.

operator method

argument
input[O] [input[1]

Figure 4.13. The PLAN node.

The plan nodes are to be examined one-by-one. The E source code generator relies

on a "tree-to-e" routine which "walks" the plan and generates E source code according

to the data in the plan nodes and their auxiliary branches. The tree-to-e routine initially

descends to the bottom nodes, and works its way upward filling buffers with header file

declarations, function and structure definitions, operator method class instatitiations, and

various external variable declarations for those relation or relations to be accessed. On(ce

every plan node is traversed, a main routine is entered into a buffer. The buffer. are pliced

together and named as an E file.

The E file is compiled and its object code is linked with the E run-time svsteni (ERTS)

(2). All object code for operator method implementations comprises the ERIS. and the

query's object file is linked with the operators it requires. Once the query is completed in

its execution, the memory allocated for the plan tree is released to the system for fuit ure

mse.

4.5.1 Implementation. The optimizer provides the query access plan, first to t1,o

optimizer, which hands it off to the code generating routines. The code generator expects

a tree structure, much like the query tree structure, except that the plan node is structur,t

as shown in Figure 4.13. Here, the integer representing a relational operator now rwprceimt.s

an operator method.

The code generating routines require four separate buffers to place the apprprit'

4-13

data and eliminate the possibility of early declarations with respect to oi evr dclarai; 1,,,s.

For instance, the query,

PJ { name, children {age} } (employees)

requires code to be generated using the file scan generator and a projection functioll. Ih,

E source code would first have to include the header file containing the . iployet, s rekLiuii

specification. From the header file, the file scan can be declared for the tuplus s ecifd

in the child and employee structures. The projection function would then be geiwrat,.d.

along with the new data structure, which is reduced to the attributes of riara and ,q:.

Fir illy, the main routine is generated with instantiations for the file scan. An iterator

steps through each tuple and returns the data to the two attriLites in the new relation.

An iterator is applied to the new relation and the data is displayed to the screen. The

generated code is shown in Figure 4.14 and Figure 4.15. A discussion of the file scan class

and its implementation may be found in the following section.

4.6 The Operator Methods

The operator methods comprise the ERTS. After an operator is designed an(d iniple-

rnented, its object code becomes a part of the ERTS, where these methods await linkiii,

with transient queries. Once the query is linked to the ERTS. the executable module iII-

vokes the operator methods and performs its member functions. Tie operator mneth(,s

are objects which are formulated under an OOD methodology.

The operator methods, as generator classes, require certain parameters specific to the

generator. Such parameters include relation and tuple types, where generator classes iiwke

iterator functions to process the relations and tuples. Since the methods are generatiur

classes, the operators require a header file for the operator method specification and a

file which contains the implementation code for the method. It is these classes which a,'

instantiated within the E source code file generated via the query access plan.

The operator methods, as previously mentioned, may be one of several types. For

instance, a file scan operator method may require a select or project function, depoid,;gi

4-14

Sifnidef FILE..SCAN..H
#include "file-scan.h"

#endif

*ifndef EMPLOYEES-H

#incl.ude "employees .h"

#endif

extern persistent employee-rel employees;

dbstruct tempi {
dbchar name [20]

public:
templ(char)
char * get-nameo;

templ::templ(char * n){

dbchar * dest = name;

while(*dest++ = *+)

I

char * templ::get..name()

dbchar * source = name;

char * dest =new char [201;

while(*dest++ = *source++);

return(kdest [0]);

dbstruct temp2{

dbchar name [20];

dbclass tempiRVA:collection [tempt];

tempiRVA templ..rels;

public:
temp2(char*)

char * get-.nameo;

Figure 4. 14. T he temnporary relation structures.

4-15

temp2::temp2(char * n){
dbchar * dest a name;

whjle(*dest++ = *+)

I

char * templ::get-.name()

dbchar * source = name;

char * dest - new char[120];
while(*dest++ = *source+.+);
return (kdest [0]);

I

dbstruct temp2-rel{

dbclass temp2-.relRVA:collection[temp2];

temp2..relRVA temp2-rels;

dbclass temp2CT:collection[temp2-rel];
temp2CT Temp2;

class erployee..rel.scan:file-scan[employee, temp2, employee-rel];

void sql-proj (employee * e, temp2 * t2){

employee & e-.ref = * e;

t2 = in (Temp2.temp2.rels) new temp2(e ->get..ziame);

iterate(templ * ti = e,.ref.children.scano) {
ti. in (e-ref.templ-rels) new templ(tl -> get-.naxeo);

I

main()
employee-.rel-.scan sql(kemployee-rel, NULL, sql-proj);

iterato(temp2 * t2 a sql.next.tupleo) f

cout << form("emp..name: /s\n", t2 -> get..nameo);

temp2 & t2..ref =* t2;

iterate~templ ti = t2-.ref.tempis.scaio) f
cout << form(Ilchild.name: IYs\n", ti -., get-nameo);

Figure 4.15. Implementing the project query

4-16

upon the particular operator method residing in the plan node. Other forms of oJper;it Ir

methods include streams and filters. A plan tree with a series of nodes normally send tleh

upstream from one node to the next. The operator methods input these tuples and proc ..s

the data according to their member functions. Figure 4.16 illustrates the specificatilo , inn

the file scan operator found in (2), while Figure 4.17 provides the loops join operator found

in the same publication. In the file scan method, the selection function expects to lwv., ;I

destination type parameter since a supertuple may not place all of its elements into aiotlhr

tuple. This occurs because sets of data within a certain attribute may or maY niot In',,t

the selection criteria.

4. 7 Testing and Validation

After implementing the model within the Exodus architecture, several simple queries

were applied to the database. The query tree structure was built for most combinations

of the project, select, and join operators. The E code generators produccJ code for tie

query for one level of nesting, invoking either the file scan or loops join operators. No

performance tests have been conducted on the system.

4-17

class file-.scan

dbclass srcType {}.
dbclass dstType fl,

dbclass srcRelType { public: iterate srcType *scano; I

typedef int C*selFunc) (srcType*, dstType*);

typedef void (*projFunc)(srcType*, dstType*);
srcRelType * relation;

selFuric select;

proj Fuxic project;
public:

file-scan(srcRelType*, selFunc, projFunc);

iterator dstType * next-.tupleo;

file-.scan::file-.scan(srcRelType * rptr, selFunc sPtr, projFunc

pPtr) {
relation = rPtr;
select = sPtr;
project = pPtr;

iterator dstType * file-.scan::next-tuple()

dstType rsltTuple;

iterate(srcType * tuplePtr = relation -> scano){
if ((select == NULL) 11 (select(tuplePtr))

if (project !- NULL) {
project(tuplePtr, krsltTuple);

yield(krsltTuple);

else

yield ((dstType*)tuplePtr);

Figure 4.16. File scan class and implementation.

4-18

class loops-.join [
dbclass srcTypel{}
dbclass srcType2 fl,
dbclass dstType fl,
class subQuery (public: iterator srcTypel * next-.tupleo; },
dbclass innerRelType f public: iteator srcType2 * scano; I

typedef int (*matchFunc) (srcTypel*, srcType2.*);
typedef void (*joinFunc)(srcTypel*, srcType2*, dstType*);
subQuery * outer;
innerReltype * inner;
matchFunc match;
joinFunc join;

public:
loops-.join(subQuery*, irmerRelType*, matchFunc, joinFunc);
iterator datType * next-tupleo;

loops-.join::loops-.join(subQuery * query, innerRelType *innerRel,
matchFunc matchPtr, joinFunc joinPtr) f

outer = query;
inner = innerRel;
match = matchPtr;
join = joinPtr;

iterator dstType * loops-.join::next-.tuple() f
dstType rsltTuple;
iterate(srcTypel * outerTuple = outer -> next.tupleo)
iterate(orcType2 * innerTuple - inner -> scan0)
if ((match --n NULL) 11 match(outerTuple, innerTuple)){

join~outerTuple, innerTuple, krsltTuple);
yield(irsltTuple);

Figure 4.17. Loops join class and implementation.

4-19

V. Conclusion

5.1 Summary

This thesis effort accomplished several objectives, resulting in the design and imple-

mentation of a nested relational database system under the Exodus extensible databaso

architecture. The key objectives include:

* Nesting relations within relations.

" A parser to create and maintain a persistent data dictionary.

" Implementing the Colby relational algebra.

* Implementing operator methods for selection, projection, and natural join of nested

relations.

An initial objertive of this effort concerned the implementation aspects of nested

relations. Through the use of the collection construct provide by Exodus, structures which

defined attributes of a particular table type were permitted to represent single entities or

attributes within other table types. By mapping corresponding relations to collections.

the logical nature of nested relations used standard procedures thoughout all the system

components. Also, the nested relations were easy to navigate because of their logical

structure.

A parsing component was designed and implemented to permit the creation of nested

relations. The data dictionary required table type information to be separated into its

individual attributes and placed into the symbol table for future reference. Since nested

relations had relations as their attributes, the data dictionary allowed previously defined

table types to become table types within other relations against which their relation-valued

attributes were declared. The persistence feature of Exodus allowed the data dictionary

to remain in the storage manager between program executions.

As an offshoot of parsing data for the data dictionary, a format to enter actual data

from a UNIX file into a relation allowed a rapid and simple method of loading it into the

relation. The UNIX file followed a logical layout for the data file in conjunction with the

5-1

relation it was to fill. The creation of such a format, logically delimited by braces, brackets.

parenthesis, and commas, provided an easy vehicle for loading data into nested relations.

The relational algebra proposed by Colby was parsed and inserted into the operator

data elements of the query tree. The query nodes and the tree structure resembled a

general structure required by the query optimizer. Because of the flexible nature of the

query tree and the nodes which described it, the query tree represented the Colby relational

algebra and was, thereby, suitable for manipulating nested relations.

The methods to implement the project, select, and natural join operators resided as

object files in the ERTS. Here, query code was compiled and linked with the implemented

methods to execute the query. The operator methods used functions to recursively descend

relations, applying criteria to carry out the necessary functions.

5.2 Future Recommendations

Several enhancements may be added to the current system to improve future use-

ability. First of all, the parser currently recognizes the three primary relational operators,

project, select, and natural join. Additional Colby operators may be added to the system.

including nest, unnest, and the set operations. To implement these operators, additional

methods may be added to the ERTS along with access methods. Finally, a more user

friendly query language, such as SQL/NF, may be added to the front end of the database

system.

5-2

.....

Vita

Captain Michael A. Mankus

e attended Purdue University at West Lafayette, Indiana

for one year before entering the United States Air Force Academy at Colorado Springs,

Colorado. There he received his Bachelor of Science degree in Electrical Engineering as

well as his Commission as a Second Lieutenant in the United States Air Force in June 1985.

His first duty assignment was as a Command and Control Test and Evaluation Engileer at

the 1815th Operational Test and Evaluation Squadron, Wright-Patterson Air Force Base,

Dayton, Ohio. lie entered the School of Engineering, Air Force Institute of Technology in

June 1988 and graduated December 1989. His current address is at Nellis Air Force Base,

Nevada.

VITA-1

B~ibliograph y

1. lnrsSLReference NlaiiaF. (Augu-tst. 1986).

2. -An Overview of the Exrol Relational DBMNS-. pages 1 -16. (MNaY, 1989.

:f.lanerjee. .1 and others. --Dat a Model Issues for Object-O0rien ted Applications". W.11A

lcnnsttios in()j Inforinaliin S'ystcins. 5(1) :3-26. (.1an nary I90

andl iuralikkri a. M. -l~m 1 h ih tr of f/hc E.XOWlI S Frlitei.'.ic Mm3!S.r-
galNwffma nit P '11)1ishers. Sani Nia teo. CA., 1988.

5. arevy. NI.]. DeWitt. D.. lHicliard.son. -I.E., and Sliekita. E-1. -Object aod l Ple
Nianageenit InI the F-XOIW'S Extonsile [)atabase Svsten('. Irwnm(diots)If th4 12//i

'I.L)B Conffc ye , (Augutst 1 9$6).

6. ('odd. E. F. "A. Ii elation a M Iodol of Data for Large S ha rel Dat a I an ks" . (ornmiini-

cation~s of tim AA! 1 (. (le 197-0).

0. 11wb, Lat ha S. ".\ Recurisive -Vlgebra for Nested Relations". Technical report. Indi-
ania Vniversityv. (.lanuarY19)

kDate. CA... .4 n Introduiction to D~atabase .Systcots l'oliow 1I. Addison-\\eslev, Reading,
Nlassachtisetts, 198:3.

9. Iafez. Aladdin and Ozsovoglu. Gmiltekin. "Storage Struictuires for Nested Relatiotis".
Dtita f."nflinef ring, pages :31-38. (September 19,"8).

10. KNun. Won, ('hou1, \Voll,-'ai, mi 'aireJy Operations aridIplniowlitt ton"
of Complex Objects". [tid. l'va n rje ioso ofwr nficii.11

.Jlmi 1988 (.

1 1 . IKort I. 11.1. a1 1(d Si Ihorscha z.. V Da tebasc " !/stc n (nrpts. NMcC raw-HllI Book
(Inn paiiY, .Now York, N.Y.. I 986.

1 2. II ot . NM. A. andl others. "SQL.NF: Ak Quiery Lainguage for - IN F He ca tional
[)at abases". Informnation Si'smins, 12(1):99-114, (Jan nary 1987-).

13. Roth, M.A.. Korth, H.F.. and Silberschatz. A. "Extendled .\lgehra and Calctil iv for
Nested Relational Databases". .41 A -I'ensartions on I))ame S(/is 13(1):38 9-
417, (December 1988).

14. Valduriez, Patrick, Khoshafia n. Setrag, and Copelanld. George'. "tin plernenitat ion
Techniques of Complex Objects". Precfdings of the Tire fth In/c rnotional ('anfi r(?(c
on Very Larqe Data Bases. pages 101-Ot09 (Auguist 1986).

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSTFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Apprnved for public rcie-le;

2b. DECLASSIFICATION DOWNGRADING SCHEDULE d i - tr i bu t i on u n 1 i.nl tid

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/ENG/89D-' 1

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

School of (If applicable)

Engineeringy A2 LT/ LIG
6c. ADDRESS (City. State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of 'IechuclogyjAU)
Wright-Pat :- cr AF13, Ohio
45433-; 5,3

8a. NAME OF FUNDING/SPONSORING I8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

Bc. ADDRESS (City, State, and ZIP Code) 10, SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK IWORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

II. TITLE (Include Security Classification)
DESIGN AND IMPLEMENTATION OF THE NESTED RELATIONAL DATA MODEL UNDER
THE EXODUS EXTENSIBLE DATABASE SYSTEM

12. PERSONAL AUTHOR(S)
Michael A. Mankus, B.S.E.E.. CaPt. UA

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yrear, Month, Day) 15. PAGE COUNT
MS Thesis FROM TO 1989 DPcPmher

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Mathematical and Computer Programming
12 05 Computer Sciences and Software

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Thesis Advisor: Major Mark A. Roth, USAF
Associate Professor of Computer Systems

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
[2UNCLASSIFIED/UNLIMITED 0 SAME AS RPT DTIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL
Maj Mark A. Roth, Associate Professor (513)255-3576 7 PNr.

O Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

UNCLASSIFIED
The problem addressed in this thesis effort concerns

the design and implementation of the nested relational data
model. The data model is designed within the Exodus
extensible architecture. Although a large amount of theory
exists with the model, no vehicle has been available to
implement the concepts. The objective of the model is to
increase performance of non-traditional databases by
modeling real-world objects in the problem domain into
nested relations within the software domain of Exodus.

Exodus is used +o implement several components
essential to the data model. First, the concept of nested
relations is realized, and then a parser is developed to
create and maintain a data dictionary. The Colby relational
algebra is used to form the query tree for the query
optimizer, and a plan tree permits the code to be generated
for the query. Operator methods are developed for the
query to be subsequently executed.

The nested relational data model was implemented using
the Exodus architecture. The query tree was built and the
code generated for the architecture's compiler. Operator
methods were implemented for the project, select, and
natural join operators. Because the data model can be
implemented, more non-traditional databases can be developed
with efficient components.

UNCLASSIFIED

